1.1. Differential forms.

a) Show that a closed *n*-form ω on the unit sphere $S^n \subset \mathbb{R}^{n+1}$ is exact if and only if $\int_{S^n} \omega = 0$.

b) Prove that a compactly supported *n*-form ω on \mathbb{R}^n is the exterior derivative of a compactly supported (n-1)-form on \mathbb{R}^n if and only if $\int_{\mathbb{R}^n} \omega = 0$.

Hint: Use stereographic projection to carry ω to a form ω' on S^n . By part a), $\omega' = d\nu$. Now $d\nu$ is 0 in a contractible neighborhood U of the north pole N. Use this to find an n-2 form μ on S^n such that $\nu = d\mu$ near N. Then $\nu - d\mu$ is zero near N, so it pulls back to a compactly supported form on \mathbb{R}^n .

1.2. De Rham cohomology of T^2 . Determine the De Rham cohomology of the torus T^2 .

1.3. Tensor fields. Let T be a (1, 2)-tensor field on M^m . Let (φ, U) and (ψ, U) be two charts on M. Show that the component ${}^{\psi}T^c_{ab}$ of T with respect to ψ depends on the components ${}^{\varphi}T^k_{ij}$ of T with respect to φ by the following relation:

$${}^{\psi}T^{c}_{ab} = \sum_{i,j,k=1}^{m} \frac{\partial \psi^{c}}{\partial \varphi^{k}} \frac{\partial \varphi^{i}}{\partial \psi^{a}} \frac{\partial \varphi^{j}}{\partial \psi^{b}} \,\,^{\varphi}T^{k}_{ij}.$$